37,865 research outputs found

    Improvement of an integral equation method in plane elasticity through modification of source density representation

    Get PDF
    Integral equation method with continuous functions for calculating boundary stress components in plane elasticit

    Flight-test nacelles

    Get PDF
    Design modifications for acoustically absorbing flight test nacelles of DC-8 turbofan engin

    The Impact of Early Positive Results on a Mathematics and Science Partnership: The Experience of the Institute for Chemistry Literacy Through Computational Science

    Get PDF
    After one year of implementation, the Institute for Chemistry Literacy through Computational Science, an NSF Mathematics and Science Partnership Institute Project led by the University of Illinois at Urbana-Champaign’s Department of Chemistry, College of Medicine, and National Center for Supercomputing Applications, experienced statistically significant gains in chemistry content knowledge among students of the rural high school teachers participating in its intensive, year-round professional development course, compared to a control group. The project utilizes a two-cohort, delayed-treatment, random control trial, quasi-experimental research design with the second cohort entering treatment one year following the first. The three-year treatment includes intensive two-week summer institutes, occasional school year workshops and year-round, on-line collaborative lesson development, resource sharing, and expert support. The means of student pre-test scores for Cohort I (η=963) and Cohort II (η=862) teachers were not significantly different. The mean gain (difference between pre-test and post-test scores) after seven months in the classroom for Cohort I was 9.8 percentage points, compared to 6.7 percentage points for Cohort II. This statistically significant difference (p\u3c.001) represented an effect size of .25 standard deviation units, and indicated unusually early confirmation of treatment effects. When post-tests were compared, Cohort I students scored significantly higher than Cohort II and supported the gain score differences. The impact of these results on treatment and research plans is discussed. concentrating on the effect of lessening rural teachers’ isolation and increasing access to tools to facilitate learning

    Sensitivity Analysis of Transportation Production Costs in Indonesia

    Full text link
    The transportation production cost (TPC) considerably has strong influence to the national economic condition. This paper focused on the analysis of the transportation production cost sensitivity in relation to the variation of the external affecting factor, which are fuel price, rupiah exchange rate and Bank of Indonesia interest rate. Based on the R2 values, the TPC components in general have significant correlation, with the fuel prices. However, they do not have high correlation to the fluctuation of interest rate and rupiah exchange rate. The sensitivity analysis shows that a 10% rise on fuel price would cause 6%, 2%, 7%, 2.4%, and 4.9% rise on the TPC of intercity bus, ferry ship, interisland ship, train, and airline, respectively

    Auxiliary-field quantum Monte Carlo study of first- and second-row post-d elements

    Get PDF
    A series of calculations for the first- and second-row post-d elements (Ga-Br and In-I) are presented using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method is formulated in a Hilbert space defined by any chosen one-particle basis, and maps the many-body problem into a linear combination of independent-particle solutions with external auxiliary fields. The phase/sign problem is handled approximately by the phaseless formalism using a trial wave function, which in our calculations was chosen to be the Hartree-Fock solution. We used the consistent correlated basis sets of Peterson and coworkers, which employ a small core relativistic pseudopotential. The AF QMC results are compared with experiment and with those from density-functional (GGA and B3LYP) and coupled-cluster CCSD(T) calculations. The AF QMC total energies agree with CCSD(T) to within a few milli-hartrees across the systems and over several basis sets. The calculated atomic electron affinities, ionization energies, and spectroscopic properties of dimers are, at large basis sets, in excellent agreement with experiment.Comment: 10 pages, 2 figures. To be published in Journal of Chemical Physic

    Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis

    Full text link
    We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis, and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with system size, as a low power. A QMC approach with auxiliary fields in principle allows an exact solution of the Schrodinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few milli-Hartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled-cluster with single and double excitations and with non-iterative triples, CCSD(T). For stretched bonds in H2_2O, our method exhibits better overall accuracy and a more uniform behavior than CCSD(T).Comment: 11 pages, 5 figures. submitted to JC
    corecore